Inventory of Close-to-Nature Forests Based on the Combination of Airborne LiDAR Data and Aerial Multispectral Images Using a Single-Tree Approach
نویسندگان
چکیده
This study is concerned with the assessment of application possibilities for remote sensing data within a forest inventory in close-to-nature forests. A combination of discrete airborne laser scanning data and multispectral aerial images separately evaluated main tree and forest stand characteristics (i.e., the number of trees, mean height and diameter, tree species, tree height, tree diameter, and tree volume). We used eCognition software (Trimble GeoSpatial, Munich, Germany) for tree species classification and reFLex software (National Forest Centre, Zvolen, Slovakia) for individual tree detection as well as for forest inventory attribute estimations. The accuracy assessment was conducted at the ProSilva demo site Smolnícka Osada (Eastern Slovakia, Central Europe), which has been under selective management for more than 60 years. The remote sensing data were taken using a scanner (Leica ALS70-CM) and camera (Leica RCD30) from an average height of 1034 m, and the ground reference data contained the measured positions and dimensions of 1151 trees in 45 plots distributed across the region. This approach identified 73% of overstory and 28% of understory trees. Tree species classification within overstory trees resulted in an overall accuracy slightly greater than 65%. We also found that the mean difference between the remote-based results and ground data was −0.3% for tree height, 1.1% for tree diameter, and 1.9% for stem volume. At the stand level, the mean difference reached values of 0.4%, 17.9%, and −21.4% for mean height, mean diameter, and growing stock, respectively.
منابع مشابه
Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds
Photogrammetric point clouds (PPC) obtained by stereomatching of aerial photographs now have a resolution sufficient to discern individual trees. We have produced such PPCs of a boreal forest and delineated individual tree crowns using a segmentation algorithm applied to the canopy height model derived from the PPC and a lidar terrain model. The crowns were characterized in terms of height and ...
متن کاملDetection of Individual Tree Crowns in Airborne Lidar Data
Laser scanning provides a good means to collect information on forest stands. This paper presents an approach to delineate single trees automatically in small footprint light detection and ranging (lidar) data in deciduous and mixed temperate forests. In rasterized laser data possible tree tops are detected with a local maximum filter. Afterwards the crowns are delineated with a combination of ...
متن کاملForest Stand Segmentation Using Airborne Lidar Data and Very High Resolution Multispectral Imagery
Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., ≥ 2 ha) of homogeneous tree species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In this p...
متن کاملSemantic segmentation of forest stands of pure species combining airborne lidar data and very high resolution multispectral imagery
Forest stands are the basic units for forest inventory and mapping. Stands are defined as large forested areas (e.g., ≥ 2ha) of homogeneous tree species composition and age. Their accurate delineation is usually performed by human operators through visual analysis of very high resolution (VHR) infra-red images. This task is tedious, highly time consuming, and should be automated for scalability...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017